Lexikon

1 - 10 / 10 megjelenítése
1 | 2 | 6 | 9 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z
abszorpció

az abszorpció olyan anyagátadási folyamat, melyben a gázhalmazállapotú, folyékony vagy oldott anyag elnyelődése, oldódása, felhalmozódása folyadékban vagy szilárd anyag belsejében megy végbe. Az adszorpció együtt az általánosabb jelentésű szorpció része. Az abszorpció mennyiségi leírására az abszorpció-koefficienst használjuk, mely megadja, hogy 1 cm3 folyadékban vagy szilárd anyagban mennyi gáz gőz oldódik. Az abszorpció-koefficiens nagysága összefügg a Henry-Dalton törvénnyel, alacsony hőmérsékleten és nagy nyomáson több gáz gőz kötődik meg. Az abszorpció erre specializált ipari berendezésekben folyik.

Talajremediációval kapcsolatban használható fő-technológiaként vagy más, pl. termikus talajkezelési módszerek kiegészítőjeként: 1. a kiszívott talajlevegő vagy a kiszívott talajvíz kezelésre, amennyiben abban abszorbeálható szennyezőanyag van jelen; 2. termikus deszorpció során keletkező gázfázis kezelésére; 3. égetés vagy pirolízis során keletkező gázok, gőzök, füstgázok kezelésére.

Az abszorpció kfejezést a biológiában is használják a felvétel, a felszívódás megnevezésére, így a bőrön keresztüli anyagfelvételre vagy bélből történő tápanyag-felszívódásra.

Az elektromágneses sugárzás, a fényenergia, az ionizáló sugárzás elnyeletése is abszorpcióval történik, absorbernek nevezett anyagokon vagy készülékekben. A sugárzások elnyeletésének célja lehet védelem, vizsgálat vagy az energia elvezetése és hasznosítása.

adszorpció

az adszorpció anyagfelhalmozódás a testek külső és belső felületein, különböző fizikai fázisok találkozása révén. Jelentheti gázok, gőzök vagy oldott anyagok felhalmozódását a folyadék vagy szilárd anyag felületi rétegében. Az adszorbeálandó anyagot megkötő partner az adszorbens. Ha az adszorbeált anyag a megkötő anyag belsejébe is behatol, akkor szorpcióról beszélünk, mely magába foglalja mind az ab- mind az adszorciót. Adszorpció fajtái: folyadék-gáz; folyadék-folyadék, szilárd-gáz, szilárd-folyadék, szilárd-szilárd. Az adszorpció lehet reverzibilis és irreverzibilis. A reverzibilis főként fizikai folyamat, a reverzibilis adszorpció esetén viszont általában kémiai reakció játszódik le, melyet kemiszorpciónak is neveznek. Az adszorpciót a fajlagos adszorbeált mennyiséggel jellemezhetjük g/cm3 vagy cm3/cm3. Az igen nagy fajlagos felületű adszorbenseket az "aktív" jelzővel illetjük, pl. aktív szén.

Az adszorpció talajremediációval kapcsolatos alkalmazásai: levegőtisztítás, talajlevegő-kezelés, talajgáz-kezelés, értékes gőzök visszanyerése, termikus deszorpció, égetés, pirolízis, vitrifikáció során keletkező gázok és gőzök kezelése, víztisztítás, ex situ talajvíz-kezelés, csurgalékok kezelése, vizes kivonatok kezelése, talajvíz- és talajszennyező ionok megkötése, kicserélése ártalmatlan ionokra, gázok, gőzök és ionok is situ lekötése felszíni vízben, talajvízben, talaj és üledék szilárd fázisaiban.

Az adszorpció különleges formája a bioszorpció, amikoris elsősorban a gáz, gőz vagy ionos oldott formájú szennyezőanyagot nagyfelületű biofilmen adszorbeáltatjuk, ahol a szennyezőanyag biológiai átalakulása megtörténik. Fontos jelenség a környezetben és technológia alapját is képezheti a növényi gyökerek adszorpciója, elsősorban a talaj pozitív ionjainak adszorpciója ioncsere mellett. A bioszorpció intenzív formája a rizoszférában gyökérzóna zajlik, itt a bevezető folyamat a biofilmek és a hajszálgyökereken történő adszorpció majd azt követő biodegradáció, illetve növényi felvétel. Az abszorpcióra képes anyagot vagy abszorberekben alkalmazzák, vagy diszperz formában juttatják a vízbe, szennyvízbe, talajba, üledékbe.

Az adszorpció fordítottja a deszorpció, az a folyamat, amikor a felületen megkötött anyag leválik a felületről és eltávozik onnan. Ez a folyamat is fontos szerepet játszik a könyezetvédelmi technológiákban, elsősorban szilárd felülethez kötött, bizonyos mértékig illékony anyagok eltávolítása céljára.

Deszorpción alapuló remediációs technológia a talajt szennyező szénhidrogének termikus deszorpciója, amikor a hő hatására mozgékonnyá vált szennyzőanyag gőz formájában leválik a talajszemcsék felületéről és a gőzfázisből kinyerhető, összegyűjthető lesz.

atomabszorpción (AAS) alapuló analízis

az atomabszorpciós spektrometria az atom-spektroszkópiai módszerek közé tartozó, a vonalas fényabszorpció jelenségét hasznosító analitikai módszer. A módszer alapja hogy a megfelelő összetételű gázlángba beporlasztott minta a lángban atomjaira bomlik, és az így nyert atomok a lángon áthaladó éles színképvonalakból álló fényből elemző vonalaikon elnyelnek (abszorbeálnak), azaz az abszorbeált vonalat mérve intenzitás-csökkenés lép fel. A Lambert-Beer törvénynek megfelelően a mért intenzitás-csökkenés logaritmusa arányos a mért elem oldatbeli koncentrációjával, azaz ez a mennyiségi meghatározás alapja az atomabszorpciós spektrometriában. Az atomos állapot előállítása a láng-atomabszorpció esetében megfelelő összetételű (és hőmérsékletű) lángok segítségével történik.
Forrás: Bánhidi Olivér: Molekula-spektroszkópiai módszerek (Miskolci Egyetem, Analitikai Kémia Tanszék)

atomabszorpciós spektrometria

az elemanalitika egyik legelterjedtebb módszere. Rövidítése AAS. Népszerűségét gyorsaságának köszönheti: egy oldatban egy elem koncentrációja 5-6 másodperc alatt meghatározható. A vizsgálandó elemet alapállapotú szabad atomokká alakítjuk. Az így létrehozott atomgőzön a vizsgálandó elemre jellemző hosszúságú fénynyalábot bocsátunk keresztül és mérjük a fényintenzitás csökkenését, amely egyértelmű kapcsolatban áll a fényelnyelést okozó atomok koncentrációjával. Az atomizáció történhet lánggal (láng-atomabszorpciós spektroszkópia) vagy termikus energiával (grafitkemencés atomabszorpciós spektrometria). (Forrás: Posta József: Atomabszorpciós spektrometria. Debreceni Egyetem, 2008, Kempelen Farkas Digitális Tankönyvtár. www.tankonyvtar.hu/kemia/atomabszorpcios-080904-63) A módszert környezeti minták (talaj, talajvíz, iszap, üledék), hulladék vagy más minták elemtartalmának meghatározására használjuk. Kb. 70 elem mérésére alkalmas univerzális módszer, mely széles koncentrációtartományban használható. A módszer hátránya, hogy a kalibrációs görbék nem lineárisak a 0,5-nél nagyobb abszorbancia-tartományban. A detektálás alsó határa (LOD) igen széles határok között változik: mindössze 1-5 ppb Ca, Cd, Cr, Cu, stb. esetén és több mint 1000 ppb pl. foszforra. Egyes elemek, pl. B, C, N, O, S, halogének, nemes gázok és a rövid élettartalmú transzuránelemek egyáltalán nem mérhetők.

ex situ termikus deszorpció
grafitkemencés atomabszorpciós spektrometria

elektrotermikus atomizáción alapuló elemanalitikai módszer. Alapállapotú atomok létrehozására a lángatomizáció mellett kialakult technika. Az adott elem különböző kötésállapotú formáinak megbontására, az atomoknak e kötésviszonyokból történő felszabadításának egyik hatékony módja, hogy nagy hőmérsékleten olvadó anyag, pl. grafit felületére felvitt oldatok, vagy szilárd minták nagy hőmérsékleten elpárolognak és termikusan atomjaikra disszociálnak. A grafit jól reprodukálhatóan magas hőmérsékletre hevíthető, 3700 oC-on szublimál. Az elektrotermikus atomizálás gyakorlatilag egyet jelent a grafitcsőben végrehajtott atomizálással, amelynek a kísérleti berendezését grafitkemencének, a fűtött csövet grafitküvettának, a módszert pedig grafitkemencés atomabszorpciós (GAAS) módszernek nevezzük. (Forrás: Posta József: Atomabszorpciós spektrometria. Debreceni Egyetem, 2008, Kempelen Farkas Digitális Tankönyvtár. www.tankonyvtar.hu/kemia/atomabszorpcios-080904-63) Folyadék és szilárd minták mérésére is alkalmas. A szilárd minták mérésekor fellépő bizonytalanság csökkenthető szuszpenziók mérésével. A módszert környezeti minták (talaj, talajvíz), hulladék elemtartalmának meghatározására használjuk.

kemiszorpció

az adszorpció irreverzibilis formája, amikoris a szorbeált anyag kémiai reakcióba lép a szorbenssel.

láng-atomabszorpciós spektrometria

más néven lángfotometria, elemanalízisre használt módszer, angol neve után rövidítése FAAS. Az analízis során a porlasztott minta a lángba jut, ahol a gerjesztett atomok és ionok kialakulnak, és adott hullámhosszúságú fényt bocsátanak ki a koncentrációjukkal arányos intenzitással. A láng szénhidrogén, pl. metán, propán, propán-bután vagy acetilén égésekor keletkezik. A leggyakrabban használt láng esetében az éghető gáz acetilén, az égést tápláló közeg levegő. Ezzel 2300 oC lánghőmérséklet alakul ki, ami elég a legtöbb anyag (közel 30 elem) atomizálására. Folyadék minták esetén a mintabevitel oldatporlasztással történik, melynek legelterjedtebb módja a nagy sebességű gázáram segítségével történő pneumatikus porlasztás. A szilárd minták bevitelére alakultak ki az ív-láng, a lézeres és elektrotermikus elpárologtatásos módszerek. (Forrás: Posta József: Atomabszorpciós spektrometria. Debreceni Egyetem, 2008, Kempelen Farkas Digitális Tankönyvtár. www.tankonyvtar.hu/kemia/atomabszorpcios-080904-63) A módszert környezeti minták (talaj, talajvíz, iszap, üledék), hulladék elemtartalmának meghatározására használjuk.

szorpció

a szorpció magába foglalaja mind az abszorpciót, mind az adszorpciót, vagyis azokat a folyamatokat, amikor egy gázfázisú agyag folyadékba egy folyadék pedig szilárd anyaghoz kötődik részben a felülethez, részben az anyag belső szerkezetéhez kötődve.

A környezettel kapcsolatos folyamatok esetében, például a környezeti elemek fizikai fázisai közötti anyagátmenetek esetén átfednek az adszorpciós (felületen való megkötődés) és abszorpciós (anyag belsejében történő megkötődés, beoldódás) folyamatok, emiatt inkább a kettőt összefogó, nem megkülönböztető szorpció kifejezést használjuk.

termikus deszorpció

100-300 oC-on (alacsony hőmérsékletű) vagy 300-600 oC-on történik a víz és a szerves szennyezőanyagok elpárologtatása a szennyezett talajból. Tulajdonképpen a szennyezőanyag ledesztillálását jelenti a szilárd felületről. Ha nedves a talaj, akkor vízgőz-desztilláció folyik.
A termikus deszorberben nem történhet égés (túl alacsony a hőfok, emiatt veszélyes égéstermékek keletkezhetnek és robbanásveszély is fennáll), ezért inert gázáramra és indirekt fűtésre van szükség.
Az elszívott gőzöket a deszorberből a gőzkezelő rendszerbe a vivőgáz vagy a vákuum-rendszer továbbítja. A gőzök kezelőrendszerében a szerves szennyezőanyagok leválasztására ciklonokat, aktív szenes vagy más töltetű adszorbereket, szűrőket, nedves elnyeletőket alkalmaznak, elégethetik vagy biológiailag bonthatják a deszorbeálódott szerves szennyező;anyagokat. Nagyobb mennyiség lepárlása esetén a szennyezőanyag újrahasznosítása is lehetséges.
A gyakorlatban két eljárás ismeretes: a forgó dobos kemence és a termikus szalagspirál.
A forgó dobos deszorber egy vízszintes vagy ferde helyzetű henger, melyet kívánatos közvetve fűteni. A csőkemencét forgatják. A kezelőtér izolációja a külső tértől igényes megoldást követel.
A termikus szalagspirál egy zárt hengerben forog, miközben továbbítja a szállítandó anyagot. Hasonló izolációra és fűtőrendszerre van szükség, mint a forgódobosnál. A szalagspirál üreges szárában keringtetett forró olaj vagy gőz közvetve fűti a szállított anyagot, a szennyezett talajt.
Az eltávozó gőzök további kezelése a technológia lényeges pontja, minden esetben szükséges.
Az alacsony hőfokú deszorberből kikerült talaj csak kis mértékben károsodik. A talaj hőmérséklete mindig alacsonyabb, mint a kemence légterének hőmérséklete. Emiatt még a 350 oC-on kezelt talaj is tartalmaz élő sejteket, és a talaj élettelen része nem bomlik, nem károsodik, könnyen revitalizálható, pl. kevés (kb. 10%) jó minőségű talaj hozzákeverésével. A termikus deszorberből kikerülő, szennyezőanyagot már nem tartalmazó talaj steril talajként is hasznosítható, steril talajt igénylő mezőgazdasági technológiákban vagy biotechnológiákban (steril növények tenyésztése, kontrollált talajoltóanyaggal oltott talaj rizoszféra kialakításához, stb.)
Magas hőfokú deszorpció 300-600oC-on történik, indirekt fűtéssel. Itt is inert gázáramot vagy vákuumot alkalmaznak, hogy a szennyezőanyag ne gyulladjon be. A többi jellemzője megegyezik az alacsony hőfokú deszorpciónál tárgyaltakkal, de a kezelt talaj károsodása nagyobb mértékű, így általában a talaj a kezelés után revitalizációra szorul, ha talajként kívánjuk használni.