Lexikon

1 - 3 / 3 megjelenítése
1 | 2 | 6 | 9 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z
igneous rock

igneous rocks are crystalline or glassy rocks formed by the cooling and solidification of molten magma. Magma is generated within the asthenosphere (the layer of partially molten rock underlying the Earth's crust) at a depth below about 60–100 kilometers (40–60 miles). Because magma is less dense than the surrounding solid rocks, it rises toward the surface. It may settle within the crust or erupt at the surface from a volcano as a lava flow. Rocks formed from the cooling and solidification of magma deep within the crust are distinct from those erupted at the surface mainly owing to the differences in conditions in the two environments. Within the Earth crust the temperatures and pressures are much higher than at its surface; consequently, the hot magma cools slowly and crystallizes completely. The slow cooling promotes the growth of minerals large enough to be identified visually without the aid of a microscope. On the other hand, magma erupted at the surface is chilled so quickly that the individual minerals have little or no chance to grow. As a result, the rock is either composed of minerals that can be seen only with the aid of a microscope or contains no minerals at all. Igneous rocks are classified on the basis of texture, mineralogy and chemistry. Texture is used to subdivide igneous rocks into two major groups: (1) plutonic igneous rocks, with mineral grain sizes that are visible to the naked eye, and (2) the volcanic extrusive rocks, which are usually too fine-grained or glassy for their mineral composition to be observed without the use of a microscope. Mineralogically, igneous rocks are classified according to QAPF diagram a double triangle diagram devised by the International Union of Geological Sciences (IUGS). The acronym, QAPF, stands for ”Quartz, Alkali feldspar, Plagioclase, Feldspathoid (Foid)". These are the mineral groups used for classification in QAPF diagram. Q, A, P and F percentages are normalized (recalculated so that their sum is 100%).QAPF diagrams are mostly used to classify plutonic igneous rocks but are also used to classify volcanic rocks if modal mineralogical compositions have been determined. Chemically, igneous rocks are classified in 3 groups according to saturation with respect to silica (SiO2):

1. acidic (oversaturated) – SiO2 content: 66–90%
2. neutral (saturated) – SiO2 content: 48–66%
3. basic (unsaturated) – SiO2 content: below 48%

Classification of igneous rocks is shown below:

igneous rocks

Acidic

Neutral

Basic, ultrabasic

SiO2 content

72%

66%

65%

57%

48%

54%

41%

plutonic igneous rocks

Granite

Granodiorite

Sienite

Diorite

Gabbro

Nefelinsienite

Peridotite

Volcanic effusive rocks

Rhyolite

Dacite

Trachite

Andesite

Basalt

Fonolite

Komatiite

intrusive igneous rocks
plutonic igneous rocks

plutonic rocks (also called intrusive igneous rocks) resulted from magmas solidified below ground. When magmas crystallize deep underground they look different from volcanic rocks because they cool more slowly and, therefore, have larger crystals. Igneous rocks cooled beneath the Earth's surface are called intrusive rocks. The intrusive equivalents of basalt, andesite, and rhyolite are gabbro, diorite, and granite, respectively. In Hungary the Velencei mountain is composed of intrusive igneous rocks such as, granodiorite and diorite and the granite block in Mórágy was formed in similar conditions.

The underground crystallization stages of the magma are the following:
A. Preliminary crystallization stage (approx. 1100–1000 °C)
During the preliminary crsystallization stage ultrabasic and basic rocks are formed. The temperature decrease results separation of the silicate and sulphide melts. The preliminary crystallization gives economically important ore deposits: chromite, magnetite, ilmenite, platina, diamond and apatite.
B. Main crystallization stage (approx. 1000–700 °C)
In the main crystallization stage the magma solidification occurs. The olivine, pyroxene, amphiboles and the feldspars crystallize in parallel and finally the quartz.
C. Post magmatic stage (from approx. 700 °C)
The volatile containing residual magma is crystallised in this phase. The post magmatic stage includes three phases:

Pegmatite phase (approx. 700–550 °C): The mineral composition of the pegmatites crystallized in this phase is identical with that of the main crystallization phase however the pegmatites contain much larger crystals. The pegmatites in general occur in veins and are rich in rare elements such as stanium, uranium, thorium, boron, lithium, berillium, zirconium, titanium, tanthal.

Pneumatolitic phases (approx. 550–375 °C): The halogene rich solutions are chemically very active and thus are able to considerably modify the solidified rocks. This phase results various minerals such as quartz, fluorite, wolframite, turmaline.

Hydrothermal phase (from approx. 375 °C): The water diluted, solutions of the residual magma penetrated the cracks, voids of the rocks forming hydrothermal veins. During the hydrothermal phase mainly the following metals are concentrated: gold, silver, copper, lead, zinc, mercury and the iron, cobalt and nickel remained still in the residual solution.